Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification.

نویسندگان

  • Meike Stumpp
  • Marian Y Hu
  • Frank Melzner
  • Magdalena A Gutowska
  • Narimane Dorey
  • Nina Himmerkus
  • Wiebke C Holtmann
  • Sam T Dupont
  • Michael C Thorndyke
  • Markus Bleich
چکیده

Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid-base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H(+)-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pH(e) and pH(i)) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO(2) conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO(2). Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pH(e) whenever seawater pH changes. However, measurements of pH(i) demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na(+) and HCO(3)(-), suggesting a bicarbonate buffer mechanism involving secondary active Na(+)-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pH(i) enables calcification to proceed despite decreased pH(e). However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-Lethal Effects of Elevated Concentration of CO2 on Planktonic Copepods and Sea Urchins

Data concerning the effects of high CO2 concentrations on marine organisms are essential for both predicting future impacts of the increasing atmospheric CO2 concentration and assessing the effects of deep-sea CO2 sequestration. Here we review our recent studies evaluating the effects of elevated CO2 concentrations in seawater on the mortality and egg production of the marine planktonic copepod...

متن کامل

Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.

Ocean acidification from the uptake of anthropogenic CO(2) is expected to have deleterious consequences for many calcifying marine animals. Forecasting the vulnerability of these marine organisms to climate change is linked to an understanding of whether species possess the physiological capacity to compensate for the potentially adverse effects of ocean acidification. We carried out a microarr...

متن کامل

Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species

Ocean acidification, as a result of increased atmospheric CO2, is predicted to lower the pH of seawater to between pH 7.6 and 7.8 over the next 100 years. The greatest changes are expected in polar waters. Our research aimed to examine how echinoid larvae are affected by lower pH, and if effects are more pronounced in polar species. We examined the effects of lowered pH on larvae from tropical ...

متن کامل

Digestion in sea urchin larvae impaired under ocean acidification

Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes1,2. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations3. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we r...

متن کامل

Coral Larvae under Ocean Acidification: Survival, Metabolism, and Metamorphosis

Ocean acidification may negatively impact the early life stages of some marine invertebrates including corals. Although reduced growth of juvenile corals in acidified seawater has been reported, coral larvae have been reported to demonstrate some level of tolerance to reduced pH. We hypothesize that the observed tolerance of coral larvae to low pH may be partly explained by reduced metabolic ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 44  شماره 

صفحات  -

تاریخ انتشار 2012